

Figure S1. (A) Schematic of specific sequences that replace the IDRs in Pms1, followed by the mutator phenotype conferred by the indicated alleles in the *MLH1* strain background. +++ indicates a wild-type mutation rate, ++, ++- and + indicate hypomorph phenotypes, and – indicates a null phenotype. See text and *Supplementary Table S1* and *Supplementary Table S4* for quantitative data and detailed description of the specific sequences. (B) Analysis of linker alleles presented in panel A in the *mlh1-\Delta348-373 background*.

Figure S2. (A) SDS-PAGE analysis (8% Coomassie blue R250 stained gel) of purified wild-type (WT) Mlh1-FLAG-Pms1, DLD_{null} (mlh1 Δ 348-373-FLAG-pms1 Δ 584-634), and DLD_{MMR} (mlh1 Δ 348-373-FLAG-pms1 Δ 438-487). (B) Analysis of DNA binding in the absence of nucleotide. For each complex, DNA binding was analyzed by filter binding. Mlh1-Pms1 variants were included at final concentrations of 12.5 nM, 25 nM, 50 nM, 100 nM, 150 nM and 200 nM in buffer containing 25 mM NaCl. DNA binding was quantified by scintillation counting. Four replicates were averaged; error bars indicate the SD. (C) Representative kymographs of WT and DLD_{MMR} complexes loaded at 50 mM NaCl and imaged at 150 mM NaCl (top and bottom), and WT Mlh1-Pms1 loaded and imaged at 150 mM NaCl (middle). These images show that the proteins are freely diffusing on DNA. Complexes that were loaded at low or high NaCl concentration were indistinguishable in the single-molecule assays. B and P indicate barrier and pedestals, respectively. (D) Diffusion coefficients of the four Mlh1-Pms1 complexes with ADP or AMP-PNP. The black bar in the box plot represents the median of the distribution. * *P*-values <0.05, ** *P*-value < 0.01, and *** *P* value < 0.005. N.S. indicates p > 0.05.

Figure S3. (A) Distribution of human nucleosomes on DNA curtains indicates a weak preference for GCrich sequences. Error bars were generated by bootstrap analysis. The % GC content for a 2 kbp sliding window is shown in the red line. (B) Representative images of various numbers of nucleosomes per DNA (left), and a histogram of frequency of nucleosome deposition on DNA fitted to a Poisson distribution (red line) with the mean of the data (right). (C) Definition of 'nucleosome zone' for bypass analysis. To determine the spatial resolution, a distribution of the net displacement of single nucleosomes was fit to a Gaussian distribution (red line). For analyzing single nucleosome bypass frequencies, the nucleosome zone was defined as a three-sigma region surrounding the mean nucleosome position (bottom). (D) A fluorescent image of double-tethered DNA curtain with > 10 nucleosomes per DNA. Nucleosomes were labeled with anti-HA antibody conjugated QDs (green). The position of each nucleosome cannot be determined due to overlapping fluorescent nucleosome signals. (E) Representative kymograph of DLD_{null} on different nucleosome density substrate in the presence of ATP.

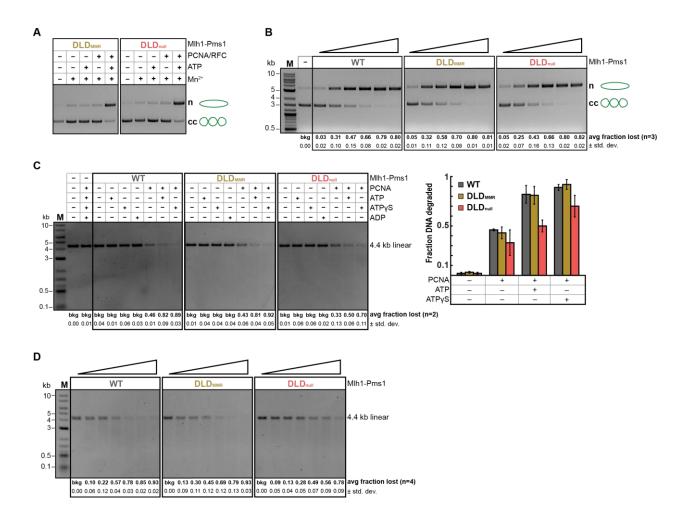


Figure S4. (A) Endonuclease activity on a closed circular DNA in the presence (+) or absence (-) of MnSO₄, ATP, and yeast RFC/PCNA. Where + is indicated, the concentration of MnSO₄ was 2.5 mM, ATP was 0.5 mM, RFC and PCNA were each 500 nM. The final concentration of Mlh1-Pms1 variants was 100 nM. All variants were analyzed side-by-side with WT as a control (Figure 4A). (B) Gel for data in Figure 4A right panel. Mlh1-Pms1 variants were titrated from 0-200 nM in the presence of 2.5 mM MnSO₄, 0.5 mM, ATP, 500 nM RFC, and 500 nM PCNA. All variants were analyzed side-by-side with WT as a control. Final image is arranged for simplicity. Quantification from three separate experiments is shown below the gel. (C) Left panel, where indicated, the final concentration of nucleotide is 0.5 mM. The amount of substrate lost was quantified and expressed as a fraction by comparing to the average of lanes 2-3. The average fraction lost was calculated from duplicate experiments. The standard deviation between two independent experiments is expressed below the gel. All variants were analyzed side-by-side with WT as a control. Final image is arranged for simplicity. Right panel, analysis of endonuclease activity of wild-type and mutant Mlh1-Pms1 complexes (100 nM) on linear DNA. Reactions contain 500 nM PCNA and 0.5 mM ATP or ATPYS as indicated. 5 mM MnSO₄ is included in all reactions. (D) Gel for data reported in *Figure 4B*. The amount of substrate lost was quantified and expressed as a fraction by comparing to lane 2, 9, or 16 for each variant. The average fraction lost and SD were calculated from four replicates (SD expressed below the gel). All variants were analyzed in a single gel. Final image is arranged for simplicity.

relevant genotype	mutation rate (x 10^{-7}) (95% CI)	п	relative to wild type
pms1\(EAY3097)	25,700 (15,400-36,700)	45	7,930
PMS1	3.24 (2.75-4.32)	40	1.0
$pms1\Delta_{584-634}$	308 (230-452)	24	95
pms1 _{50-scramble1}	332 (213-414)	20	103
pms1 _{50-scramble2}	238 (184-338)	20	74
pms150-scramble3	335 (303-405)	20	104
pms1 _{50-scramble4}	413 (339-637)	20	127
pms1 _{50-scramble5}	520 (357-615)	20	161
pms140-alpha-helix1	378 (214-505)	20	117
pms140-alpha-helix2	465 (335-645)	20	144
pms1 _{50-SRR-1}	436 (391-575)	20	135
pms1 _{52-SRR}	315 (210-444)	20	97
pms1 _{71-SRR}	413 (318-592)	20	128
pms1 _{92-SRR}	421 (314-639)	20	130
pms1 _{94-SRR}	514 (414-745)	20	159
pms1 _{50-SRR-2}	229 (120-340)	20	71
pms1 _{scramble584-593}	33.4(12.1-58.3)	15	10
pms1 _{scramble} 594-603	286(157-428)	15	88
pms1 _{scramble604-613}	1,180(870-1,360)	15	365
pms1 _{scramble614-623}	28.6(13.8-42.6)	15	9
pms1 _{scramble624-633}	26.3(16.7-30.8)	15	8
pms1 _{Y613A}	89(55-128)	20	27
pms1 _{Y594A}	22.7(8.8-32.8)	15	7
$mlhl\Delta$, $pmsl\Delta$ (EAY1365)	13,400 (9,330-15,400)	30	4,570
MLH1, PMS1	2.94 (2.2-4.1)	20	1.0
mlh1 $\Delta_{348-373}$, PMS1	206 (118-256)	20	70
mlh1∆348-373, pms1∆584-634	8,420 (4,460-10,300)	20	2,860

Supplementary Table S1. *pms1* linker arm insertions are unable to rescue *pms1*Δ584-634 MMR defects

mlh1 $\Delta_{348-373}$, pms1 $\Delta_{437-487}$	429 (393-857)	20	146
$mlh1\Delta_{348-373}, pms1_{50-scramble1}$	13,100 (9,280-17,400)	20	4,450
$mlh1\Delta_{348-373}, pms1_{52-SRR}$	3,000 (2,150-7,470)	20	1,020
$mlh1\Delta_{348-373}, pms1_{71-SRR}$	3,858 (3,260-7,150)	20	1,320
$mlh1\Delta_{348-373}, pms1_{92-SRR}$	5,870 (5,100-7,330)	20	2,000
$mlh1\Delta_{348-373}, pms1_{50-SRR-2}$	3,430 (2,890-6,180)	20	1,170
Mlh1, pms1 _{Mlh1 linker}	13,700 (9,580-19,700)	15	4,670
mlh1 _{Pms1 linker} , Pms1	7,680 (4,170-11,700)	15	2,610
mlh1 _{Pms1 linker} , pms1 _{Mlh1 linker}	8,330 (3,130-20,400)	15	2.830

The indicated *mlh1* and *pms1* alleles were tested in the *lys2::insE-A*₁₄ reversion assay, and Lys⁺ reversion rates (CI, confidence interval) were calculated as described in the *Materials and Methods*. n, number of independent measurements. The *PMS1* and *pms1* alleles were expressed from the native *PMS1* promoter in pRS413 derived *ARS-CEN HIS3* plasmids. The *MLH1* and *mlh1* alleles were expressed from the native *MLH1* promoter in pRS415 derived *ARS-CEN LEU2* plasmids. These plasmids (*Supplementary Table S4*) were transformed into EAY3097 (*pms1* Δ) and EAY1365 (*mlh1* Δ , *pms1* Δ) strains.

Nucleotide type	Protein type	$\begin{array}{l} 1D \ diffusion \pm \\ S.E.M. \\ (\mu m^2 \ s^{-1}) \end{array}$	Number of molecules	-	alue e to WT) K-S test
	WT	0.507 ± 0.07	56	N/A	
None	DLD _{MMR}	0.223 ± 0.04	41	0.1	0.01
	DLD _{null}	0.078 ± 0.01	39	1.5x10 ⁻⁶	6.7x10 ⁻⁹
ADP	WT	0.584 ± 0.07	46	N/A	
	DLD _{MMR}	0.303 ± 0.04	40	0.001	0.0007
	DLD _{null}	0.376 ± 0.14	34	0.15	0.001
	WT	0.753 ± 0.18	30	N/A	
AMP-PNP	DLD _{MMR}	0.451 ± 0.11	41	0.13	0.99
	DLD _{null}	0.275 ± 0.05	26	0.02	0.07
	WT	0.918 ± 0.10	59	N/A	
ATP	DLD _{MMR}	0.646 ± 0.10	50	0.069	0.007
	DLD _{null}	0.171 ± 0.02	42	8.2x10 ⁻⁸	9.3x10 ⁻¹³

Supplementary Table S2. Nucleotide-dependent Mlh1-Pms1 diffusion coefficients

All data points were acquired in imaging buffer containing 150 mM NaCl.

Nucleoti de type	Protein- Condition	Number of trajectori es	Number of collision s	Probabil ity ± std. dev.	P-value (relative to WT)	P-value (relative to DLD _{MMR})	Average number of collisions per trajectory ± std. dev.
	WT	31	1361	0.30 ± 0.003	N/A		44 ± 44
Minus	DLD _{MMR}	29	1166	0.18 ± 0.005	2.8x10 ⁻¹¹		40 ± 29
	DLD _{null}	27	1033	0.19 ± 0.002	6.1x10 ⁻⁹	0.54	38 ± 24
	WT	34	1223	0.21 ± 0.007	N/A		35 ± 35
ATP	DLD _{MMR}	30	1572	0.063 ± 0.004	4.8x10 ⁻²⁸		56 ± 60
	DLD _{null}	30	1111	0.070 ± 0.002	1.9x10 ⁻¹⁹	0.08	37 ± 30

Supplementary Table S3. Probability of single nucleosome bypass by Mlh1-Pms1 complexes

P-values are determined from fitting binary logistic regression relative to WT with same nucleotide condition.

Plasmid	Relevant genotype	Vector type	Source
pRS413		ARS-CEN, HIS3	(Christianson et al., 1992)
pRS415		ARS-CEN, LEU2	(Christianson et al., 1992)
pEAA213	MLH1	ARS-CEN, LEU2	(Plys et al., 2012)
pEAA526	$mlh1\Delta_{348-373}$ ($FLAG_{499}$)	ARS-CEN, LEU2	(Plys et al., 2012)
pEAA238	PMS1	ARS-CEN, HIS3	(Plys et al., 2012)
pEAA544	$pms1\Delta_{437-487}(HA_{565})$	ARS-CEN, HIS3	(Plys et al., 2012)
pEAA548	pms1⊿584–634 (HA565)	ARS-CEN, HIS3	(Plys et al., 2012)
pEAA644	pms150-scramble1	ARS-CEN, HIS3	This study
pEAA645	pms150-scramble2	ARS-CEN, HIS3	This study
pEAA646	pms1 _{50-scramble3}	ARS-CEN, HIS3	This study
pEAA647	pms1 _{50-scramble4}	ARS-CEN, HIS3	This study
pEAA648	pms150-scramble5	ARS-CEN, HIS3	This study
pEAA649	pms1 _{40-alpha-helix1}	ARS-CEN, HIS3	This study
pEAA650	$pms1_{40-alpha-helix2}$	ARS-CEN, HIS3	This study
pEAA651	pms150-5RR-1	ARS-CEN, HIS3	This study
pEAA652	pms1 _{52-SRR}	ARS-CEN, HIS3	This study
pEAA653	pms1 _{71-SRR}	ARS-CEN, HIS3	This study
pEAA654	pms1 _{92-SRR}	ARS-CEN, HIS3	This study
pEAA655	pms1 _{94-SRR}	ARS-CEN, HIS3	This study
pEAA656	pms1 _{50-SRR-2}	ARS-CEN, HIS3	This study
pEAA657	$pms1_{full}$ mlh1 Linker	ARS-CEN, HIS3	This study
pEAA658	$mlh1_{full\ pms1\ Linker}$	ARS-CEN, LEU2	This study
pEAA659	pms1 _{Y613A}	ARS-CEN, HIS3	This study

Supplementary Table S4. Plasmids used in this study

Suppl. Information - Kim, Furman, et al. 10

pEAA660	$pms1_{Y594A}$	ARS-CEN, HIS3	This study
pEAA661	$pms1_{scramble584-593}$	ARS-CEN, HIS3	This study
pEAA662	$pms1_{scramble594-603}$	ARS-CEN, HIS3	This study
pEAA663	$pms1_{scramble604-613}$	ARS-CEN, HIS3	This study
pEAA664	pms1 _{scramble614-623}	ARS-CEN, HIS3	This study
pEAA665	pms1 _{scramble624-633}	ARS-CEN, HIS3	This study
pEAE269	GAL1-MLH1(FLAG ₄₉₉)-VMA1-CBD	2μ, TRP1	(Plys et al., 2012)
pEAE308	$GAL1$ -mlh1 $\Delta_{348-373}$ (FLAG499)-VMA1-CBD	2μ, TRP1	(Plys et al., 2012)
pMH8	GAL10-PMS1	2μ, LEU2	(Hall and Kunkel, 2001)
pEAE388	GAL10-pms12437-487	2μ, LEU2	This study
pEAE419	GAL10-pms11/584-634	2µ, LEU2	This study

Plasmid constructs expressing pms1 proteins in which the specified amino acid sequences replace those deleted in $pms1\Delta_{584-634}$.

Plasmid	insert	amino acid sequence replacement
pEAA644	pms1 50-scramble1	SSKSNKFGINSNKSLIDGKRNERFLMLDK KNSEQIISTRESDSKYYETHI
pEAA645	pms1 _{50-scramble2}	ISKMSKILKKNIESSSGEYNKSFLNSEQRN YSGTLINLKDDTEDIKFRHR
pEAA646	pms1 _{50-scramble3}	DTIERNGESIKLDFSESFKKSISTKSKLKNM ESSIRYKIRGLLNDNYQSNH
pEAA647	pms1 _{50-scramble4}	NKSSQSKIGLRSRLYIGTMTENSSKSFEDII KHSDSNILLYKNFRDEKINE
pEAA648	pms1 _{50-scramble5}	GGRNIKEINFKLIQIKKEDSLLSKSIDMRH TKSNFTNYESYSDKESRSSNL
pEAA649	pms1 _{40-alpha-helix1}	NSRKSEAAAKEAAAKEAAAKEAAAKEAAAKEAAA KEAAAKEAAAKEAAAKQMSSII
pEAA650	pms1 _{40-alpha-helix2}	SMISQEAAAKEAAAKEAAAKEAAAKEAAAKEAAA KEAAAKEAAAKEAAAKEAAAKNKISSR
pEAA651	pms1 _{50-SRR-1}	SSSTSSDSGSSSSSSASSSGSSSTSSDSGSS SSSASSSGSGTMKHGT
pEAA652	pms1 _{52-SRR}	RRSSSTSSDSGSSSSSSASSSGSSSTSSDSG. SSSSSASSSGSGTMKHGT

Suppl. Information - Kim, Furman, et al. 11

pEAA653	pms1 _{71-SRR}	SSSTSSDSGSSSSSSASSSGSSSTSSDSGSSS SSSASSSGSSSTSSDSGSSSSSASSSGSGT MKHGT
pEAA654	pms1 _{92-SRR}	SSSTSSDSGSSSSSSASSSGSSSTSSDSGSSS SSSASSSSGSSSTSSDSGSSSSSASSSSGSSST
		SSDSGSSSSSSASSSSGSGTMKHGT
pEAA655	pms1 _{94-SRR}	RRSSSTSSDSGSSSSSSASSSGSSSTSSDSGS
		SSSSSASSSGSSSTSSDSGSSSSSSASSSGSS STSSDSGSSSSSASSSGSGTMKHGT
pEAA656	pms1 _{50-SRR-2}	MASTRVLASRLASQMAASAKVARPAVRVA
		XVSKRTIQTGSPLQTRAYSS

Plasmid constructs expressing pms1 proteins in which the specified amino acid sequences replace those deleted in the designated region

pEAA661	pms1 _{scramble584-593}	ISKMSKILKK
pEAA662	pms1 _{scramble} 594-603	NIESSSGEYN
pEAA663	pms1 _{scramble604-613}	KSFLNSEQRN
pEAA664	pms1 _{scramble614-623}	SYSGTLINLK
pEAA665	pms1 _{scramble624-633}	DDTEDIKFRH

Full plasmid descriptions can be found in the Materials and Methods.